
Residence Index
Workshop Handout - GLATOS, February 28, 2019

Alex Nunes (anunes@dal.ca)

Updated: 2024-09-18

Contents

1 Introduction 2

1.1 Function overview . 2

1.2 Calculation methods . 2

1.3 Defining locations . 3

1.4 Other grouping variables . 3

1.5 Accounting for groups in total time . 3

2 Examples 4

2.1 Getting started . 4

2.1.1 Importing Libraries . 4

2.1.2 Importing and compressing data . 4

2.2 Kessel Method . 5

2.2.1 Optional location data . 11

2.2.2 Groupwise total time . 12

2.3 Time Interval Method . 14

2.3.1 Changing time interval size . 15

2.4 Timedelta Method . 19

2.5 Aggregate With Overlap Method . 21

2.6 Aggregate No Overlap Method . 23

1

mailto:anunes@dal.ca

1 Introduction

The residence_index function in the R package glatos calculates the relative amount of time that a tagged
animal (or animals) occupied each of a set of discrete locations monitored by receivers. Among locations in
a detection dataset, the derivation of the residency index (RI) value for each location k seems simple at first
glance:

RIk = tk

T
,

where tk is the amount of time spent at location k and T =
∑K

k=1 tk is the total amount of time spent among
any of all K locations. In practice, there are numerous ways to calculate tk and thus, seemingly endless flavors
of RI exist (much like other ecological indices). residence_index provides five different calculation methods
for RI. Each method has either been previously described in scientific literature (e.g., the “Kessel” method1)
or represents what we theorize as appropriate methods for certain situations (array designs, questions, etc.).
However, these methods have only recently been developed and are still being evaluated. With any of the
above methods, use of RI to address specific questions or test hypotheses about animal space use will further
require assumptions and data manipulation. For example, when a dataset contains detections of multiple
tagged animals, it may be prudent to use the mean RI (R̄Ik) among individuals, which requires calculating
RI for each individual separately. Similarly, one might seek to compare R̄Ik among groups of animals (e.g.,
by age, sex) or time periods. Examples in this vignette are intended to briefly introduce methods that may
be useful for such manipulations and also for summarizing and exploring RI with graphs and maps.

1.1 Function overview

The residence_index function will take a condensed detection event dataframe (in the form returned by
the glatos function detection_events with argument condensed = TRUE) and return a data frame with RIk,
tk (in days), and T (in days) for each location or location/individual combination in columns named res-
idency_index, detected_days, and total_days, respectively. Latitude and longitude of each unique location
are also summarized and returned in columns named mean_latitude and mean_longitude.

1.2 Calculation methods

The calculation_method argument is used to specify the method used to calculate RI and its components.
Currently, five methods are avaiable, which differ principally by the way they calculate the amount of time
detected:

• kessel counts discrete calendar days

• time_interval counts discrete time intervals of user-specified size (e.g., 1 day, 2 weeks, etc.); interval
size is set by argument time_interval_size

• timedelta calculates total duration between first detection of first event and last detection of last
event within each location (or group)

• aggregate_no_overlap calculates total duration among all detection events but does not “double
count” any overlapping events

• aggregate_with_overlap calculates total duration among all detection events but counts all events
separately

1Kessel, S.T., Hussey, N.E., Crawford, R.E., Yurkowski, D.J., O’Neill, C.V. and Fisk, A.T., 2016. Distinct patterns of Arctic
cod (Boreogadus saida) presence and absence in a shallow high Arctic embayment, revealed across open-water and ice-covered
periods through acoustic telemetry. Polar Biology, 39(6), pp.1057-1068. https://www.researchgate.net/publication/279269147

2

https://www.researchgate.net/publication/279269147

1.3 Defining locations

By default, RI calculations and results (which also include mean latitude and longitude for each unique
location) are limited to the set of locations present in the input data frame and will not include locations
where no animals were detected. To include sites with no detections, a set of locations can be specified in a
data frame via the locations argument.

1.4 Other grouping variables

RI is always calculated separately for each unique value of in the location column of the input detection data
or optional locations data frame, but one or more additional grouping columns can be specified using the
group_col argument. By default, group_col = "animal_id", so RI will be calculated for each animal at
each location. If group_col = NULL, then the animal_id column (an all other columns except location) will
be ignored.

1.5 Accounting for groups in total time

By default (when argument groupwise_total = TRUE), then total time will represent the proportion of time
that only the ith animal spent at all locations, such that

RIk,i = tk,i∑K
k=1 tk,i

.

Conversely, if groupwise_total = FALSE, the denominator of the RI calculation (representing total time
detected) will ignore grouping variables specified in group_col such that for group i at location k

RIk,i = tk,i∑K
k=1 tk

.

For example when group_col = "animal_id", RIk,i for each animal represents the time that a particular
animal i spent at location k as a proportion of time that all animals spent at all locations.

3

2 Examples

This section includes simple examples of each of the five calculation methods using example walleye data
and mostly-default input arguments. Results are displayed as simple bubble plots (maps) in this section,
because it is generic and effective–not because it is our preferred or recommended method. More capable
and user-friendly plotting methods, including the purpose-built ri_plot function, will be briefly introduced
in another section, but for the most part we expect users to use a wide variety of plotting methods depending
on their particular goals and preferences.

2.1 Getting started

2.1.1 Importing Libraries

Import glatos an dplyr. We’ll use dplyr for summarizing results and sp for mapping spatial objects.

library(glatos)
library(dplyr)
library(sp)

2.1.2 Importing and compressing data

We will import the sample walleye detection data using glatos::read_glatos_detections().

Note that system.file is only used here because we need to get the path to the example data file that’s
bundled with the glatos package. To run a different file from another location, skip this function and just
set det_file to the path of your own file (e.g., det_file <- "C:/your_files/your_detections.csv").

det_file <- system.file("extdata", "walleye_detections.csv",
package = "glatos")

detections <- read_glatos_detections(det_file)

Next, we compress the detections into detection events using glatos::detection_events() and include the
time-based event separator (argument time_sep) of 3600 seconds (one hour). This means that events will not
contain a detection time gap (at the same location) exceeding one hour. Note that the other arguments are
not shown below because we are using default values, which means the detection events will be grouped on the
glatos_array column (location_col argument). Finally, the events are in “condensed” (i.e., “compressed”)
form, meaning there is one row for each event, including first_detection and last_detection timestamps.

det_events <- glatos::detection_events(detections, time_sep = "3600")
The event filter distilled 7180 detections down to 282 distinct detection events.

Note the structure below. residence_index requires a file with this structure.

head(det_events)
event animal_id location mean_latitude mean_longitude first_detection last_detection num_detections

1 1 153 TTB 43.38991 -83.99063 2012-04-29 01:48:37 2012-04-29 02:26:07 21
2 2 153 SGR 43.61098 -83.87383 2012-04-30 04:46:40 2012-04-30 09:50:21 93
3 3 153 SBI 44.17769 -83.54458 2012-05-23 01:24:51 2012-05-23 03:57:01 24
4 4 153 SBI 44.17815 -83.54572 2012-05-23 05:21:37 2012-05-23 06:57:33 30
5 5 153 SBO 44.24159 -83.43473 2012-05-24 08:01:20 2012-05-24 10:42:25 104

4

6 6 153 SBO 44.23708 -83.42447 2012-05-24 12:29:44 2012-05-24 12:29:44 1
res_time_sec

1 2250
2 18221
3 9130
4 5756
5 9665
6 0

2.2 Kessel Method

The “Kessel” method (calculation_method = "kessel") is based on the method described by Kessel et
al. (2016)2. It converts both the first_detection and last_detection columns into a date with no hours,
minutes, or seconds. Next it creates a list of the unique days where a detection was seen. The size of the list
is returned as the total number of days as an integer. This calculation is used to determine the total number
of distinct days (T) and the total number of distinct days per location (S). Possible rounding error may
occur as a detection on 2016-01-01 23:59:59 and a detection on 2016-01-02 00:00:01 would be counted
as two days when it is really 2-3 seconds.

RI = tk

T

RI = ResidenceIndex

tk = Distinct number of days detected at the location
T = Distinct number of days detected at any location

Warning. The current version of the Kessel method will not correctly count days if detection events span
more than two calendar days (it will only count the first and last day of such events.

ri <- glatos::residence_index(det_events, calculation_method = 'kessel')

Note the resulting structure. By default, RI has been provided for each animal at each location (because
group_col = "animal_id").

head(ri)
animal_id days_detected total_days residency_index location mean_latitude mean_longitude

1 153 0 46 0.00000000 DRF 42.24937 -83.11824
2 153 0 46 0.00000000 DRL 42.10545 -83.11915
3 153 0 46 0.00000000 DRU 42.34577 -82.95567
4 153 11 46 0.23913043 FMP 45.50061 -83.90501
5 153 0 46 0.00000000 MAU 41.60865 -83.57001
6 153 2 46 0.04347826 OSC 44.45174 -83.30832

This allows us to explore differences in RI among locations while accounting for variation among individual
animals. For example, the vertical boxplot below shows distributions of RI among fish at each location.
Keep in mind that this is a treacherous example because there are only three fish in this data set.

boxplot(residency_index~location, data = ri, horizontal = TRUE, las = 1,
xlab= 'Residence Index (method = "kessel")')

2Kessel, S.T., Hussey, N.E., Crawford, R.E., Yurkowski, D.J., O’Neill, C.V. and Fisk, A.T., 2016. Distinct patterns of Arctic
cod (Boreogadus saida) presence and absence in a shallow high Arctic embayment, revealed across open-water and ice-covered
periods through acoustic telemetry. Polar Biology, 39(6), pp.1057-1068. https://www.researchgate.net/publication/279269147

5

https://www.researchgate.net/publication/279269147

DRF

DRU

MAU

PRS

SBI

SCL

SGR

STG

TSR

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Residence Index (method = "kessel")

lo
ca

tio
n

Next we will plot RI values on a map. We’ll start with a plot for each fish on the sample Great Lakes polygon
object that is bundled with the glatos package.

Here’s the plot for one fish (below). Note that in the code below we have arbitrarily scaled the point size
by “30*RI + 1”. The “+ 1” just ensures that locations with RI = 0 would show up on the plot. We’ve also
colored those points differently (pink) to clearly differentiate from the others (red).

#get example great lakes polygon
data(greatLakesPoly)

#plot; note indexing sp for plot.sp
sp::plot(greatLakesPoly, asp = 1,

xlim = range(ri$mean_longitude),
ylim = range(ri$mean_latitude),
col = "white", bg = "grey80")

#sort by decreasing residency_index so that large bubbles don't hide smaller
ri <- ri[order(ri$residency_index, decreasing = TRUE),]

#make column for symbol color
ri$color <- "red"
ri$color[ri$residency_index == 0] <- "pink" #sites with no detects

points(mean_latitude ~ mean_longitude, data = ri[ri$animal_id == "153",],
pch = 21, cex = 1 + 30*residency_index, bg = color)

6

Notice that this fish was detected at all sites in L. Huron and none in L. Erie and detections at the two more
northern sites accounted for more time than other sites.

The second fish shows a much different pattern (below), with detections only in the Maumee River and near
reefs in the Western Basin.

#plot; note indexing sp for plot.sp
sp::plot(greatLakesPoly, asp = 1,

xlim = range(ri$mean_longitude),
ylim = range(ri$mean_latitude),
col = "white", bg = "grey80")

points(mean_latitude ~ mean_longitude, data = ri[ri$animal_id == "22",],
pch = 21, cex = 1 + 30*residency_index, bg = color)

7

The third fish shares one site in common (Maumee R.) with the second fish, but was otherwise only detected
in the Detroit and St. Clair rivers.

#plot; note indexing sp for plot.sp
sp::plot(greatLakesPoly, asp = 1,

xlim = range(ri$mean_longitude),
ylim = range(ri$mean_latitude),
col = "white", bg = "grey80")

points(mean_latitude ~ mean_longitude, data = ri[ri$animal_id == "23",],
pch = 21, cex = 1 + 30*residency_index, bg = color)

8

Next, we will calculate and plot the mean RI among the three fish (yes, the sample size is too small; this is
just a demo).

We will use functions from the dplyr package and pipes (%>%) from magrittr package because that’s what
the kids are into these days.

#calculate mean and sd of RI among fish
rik_summary <- ri %>%

group_by(location, mean_latitude, mean_longitude) %>%
summarise(

ri_mean = mean(residency_index),
ri_sd = sd(residency_index))

`summarise()` has grouped output by 'location', 'mean_latitude'. You can override using the `.groups` argument.

head(rik_summary)
A tibble: 6 x 5
Groups: location, mean_latitude [6]

location mean_latitude mean_longitude ri_mean ri_sd
<chr> <dbl> <dbl> <dbl> <dbl>

1 DRF 42.2 -83.1 0.0196 0.0340
2 DRL 42.1 -83.1 0.0196 0.0340
3 DRU 42.3 -83.0 0.0196 0.0340
4 FMP 45.5 -83.9 0.0797 0.138

9

5 MAU 41.6 -83.6 0.327 0.324
6 OSC 44.5 -83.3 0.0145 0.0251

Now we plot the means on a map.

#plot; note indexing sp for plot.sp
sp::plot(greatLakesPoly, asp = 1,

xlim = range(ri$mean_longitude),
ylim = range(ri$mean_latitude),
col = "white", bg = "grey80")

#sort by decreasing residency_index so that large bubbles don't hide smaller
rik_summary <- rik_summary[order(rik_summary$ri_mean, decreasing = TRUE),]

#make column for symbol color
rik_summary$color <- "red"
rik_summary$color[rik_summary$ri_mean == 0] <- "pink" #sites with no detects

points(mean_latitude ~ mean_longitude, data = rik_summary,
pch = 21, cex = 1 + 30*ri_mean, bg = color)

If we had more than three fish in our sample data set, we might infer something about the walleye space use
from this information.

10

2.2.1 Optional location data

Notice in the last plot that all there were no locations without detections. Let’s bring in receiver
location data from the rest of the GLATOS network. We will read in the sample receiver file us-
ing glatos::read_glatos_receivers() and then change column names to match those required by
residence_index().

#get sample receiver data from pkg
loc_file <- system.file("extdata", "sample_receivers.csv",

package = "glatos")
locs <- read_glatos_receivers(loc_file)
locs <- unique(locs[, c("glatos_array", "deploy_lat", "deploy_long")])
names(locs) <- c("location", "mean_latitude", "mean_longitude")

rik2 <- residence_index(det_events, locations = locs,
calculation_method = 'kessel')

Now we calculate mean RI and graph again.

#calculate mean and sd of RI among fish
rik2_summary <- rik2 %>%

group_by(location, mean_latitude, mean_longitude) %>%
summarise(

ri_mean = mean(residency_index),
ri_sd = sd(residency_index))

`summarise()` has grouped output by 'location', 'mean_latitude'. You can override using the `.groups` argument.

#sort by decreasing residency_index so that large bubbles don't hide smaller
rik2_summary <- rik2_summary[order(rik2_summary$ri_mean, decreasing = TRUE),]

#plot; note indexing sp for plot.sp
sp::plot(greatLakesPoly, asp = 1,

xlim = range(rik2$mean_longitude),
ylim = range(rik2$mean_latitude),
col = "white", bg = "grey80")

#make column for symbol color
rik2_summary$color <- "red"
rik2_summary$color[rik2_summary$ri_mean == 0] <- "pink" #sites with no detects

points(mean_latitude ~ mean_longitude, data = rik2_summary,
pch = 21, cex = 1 + 30*ri_mean, bg = color)

11

2.2.2 Groupwise total time

Next, let’s recalculate RI using groupwise_total = TRUE so that RI represents the proportion of each fish’s
own time spent at each location.

rik3 <- residence_index(det_events, locations = locs,
calculation_method = 'kessel',
groupwise_total = TRUE)

Now we calculate mean RI and graph again.

#calculate mean and sd of RI among fish
rik3_summary <- rik3 %>%

group_by(location, mean_latitude, mean_longitude) %>%
summarise(

ri_mean = mean(residency_index),
ri_sd = sd(residency_index))

`summarise()` has grouped output by 'location', 'mean_latitude'. You can override using the `.groups` argument.

#sort by decreasing residency_index so that large bubbles don't hide smaller
rik3_summary <- rik3_summary[order(rik3_summary$ri_mean, decreasing = TRUE),]

12

#plot; note indexing sp for plot.sp
sp::plot(greatLakesPoly, asp = 1,

xlim = range(rik3$mean_longitude),
ylim = range(rik3$mean_latitude),
col = "white", bg = "grey80")

#make column for symbol color
rik3_summary$color <- "red"
rik3_summary$color[rik3_summary$ri_mean == 0] <- "pink" #sites with no detects

points(mean_latitude ~ mean_longitude, data = rik3_summary,
pch = 21, cex = 1 + 30*ri_mean, bg = color)

Results here are different than the previous example, with noticably larger mean RI values in Lake Erie and
the Maumee River when total time represents individual fish instead of all fish.

13

2.3 Time Interval Method

The “time interval” method (calculation_method = "time_interval") is similar to the “kessel” method,
but allows the user to specify size of the time interval. Specifically, this method determines the number of
time intervals in which detections occurred at each location and as a fraction of the number of time intervals
in which detections occurred among all sites. For each location, residency index (RI) is calculated:

RI = tk

T

RI = ResidenceIndex

tk = Distinct number of time intervals in which detection observed at this location
T = Distinct number of time intervals in which detection observed at any location

For consistency with other calculation_methods, the L and T are not reported, but are converted cumulative
time covered in days and reported in columns days_detected and total_days.

riti <- glatos::residence_index(det_events, locations = locs,
calculation_method = "time_interval")

Note the resulting structure.

head(riti)
animal_id days_detected total_days residency_index location mean_latitude mean_longitude

1 153 0 46 0 AGR 44.02980 -83.68433
2 153 0 46 0 BBI 45.69734 -84.41925
3 153 0 46 0 BBW 45.77276 -84.61658
4 153 0 46 0 BLC 46.49420 -84.27662
5 153 0 46 0 BLL 46.53541 -84.21317
6 153 0 46 0 BMR 45.53289 -84.12079

Now we calculate mean RI and graph again.

#calculate mean and sd of RI among fish
riti_summary <- riti %>%

group_by(location, mean_latitude, mean_longitude) %>%
summarise(

ri_mean = mean(residency_index),
ri_sd = sd(residency_index))

`summarise()` has grouped output by 'location', 'mean_latitude'. You can override using the `.groups` argument.

#sort by decreasing residency_index so that large bubbles don't hide smaller
riti_summary <- riti_summary[order(riti_summary$ri_mean, decreasing = TRUE),]

#plot; note indexing sp for plot.sp
sp::plot(greatLakesPoly, asp = 1,

xlim = range(riti$mean_longitude),
ylim = range(riti$mean_latitude),
col = "white", bg = "grey80")

#make column for symbol color
riti_summary$color <- "red"
riti_summary$color[riti_summary$ri_mean == 0] <- "pink" #sites with no detects

14

points(mean_latitude ~ mean_longitude, data = riti_summary,
pch = 21, cex = 1 + 30*ri_mean, bg = color)

This is very similar to the “kessel” results, as expected.

2.3.1 Changing time interval size

Next, let’s recalculate RI using finer (15 min) and coarser (monthly) time intervals.

riti <- glatos::residence_index(det_events, locations = locs,
calculation_method = "time_interval",
time_interval_size = "15 mins")

#calculate mean and sd of RI among fish
riti_summary <- riti %>%

group_by(location, mean_latitude, mean_longitude) %>%
summarise(

ri_mean = mean(residency_index),
ri_sd = sd(residency_index))

15

`summarise()` has grouped output by 'location', 'mean_latitude'. You can override using the `.groups` argument.

#sort by decreasing residency_index so that large bubbles don't hide smaller
riti_summary <- riti_summary[order(riti_summary$ri_mean, decreasing = TRUE),]

#plot; note indexing sp for plot.sp
sp::plot(greatLakesPoly, asp = 1,

xlim = range(riti$mean_longitude),
ylim = range(riti$mean_latitude),
col = "white", bg = "grey80")

#make column for symbol color
riti_summary$color <- "red"
riti_summary$color[riti_summary$ri_mean == 0] <- "pink" #sites with no detects

points(mean_latitude ~ mean_longitude, data = riti_summary,
pch = 21, cex = 1 + 30*ri_mean, bg = color)

2.3.1.1 15-minute intervals

riti <- glatos::residence_index(det_events, locations = locs,
calculation_method = "time_interval",

16

time_interval_size = "1 month")

#calculate mean and sd of RI among fish
riti_summary <- riti %>%

group_by(location, mean_latitude, mean_longitude) %>%
summarise(

ri_mean = mean(residency_index),
ri_sd = sd(residency_index))

`summarise()` has grouped output by 'location', 'mean_latitude'. You can override using the `.groups` argument.

#sort by decreasing residency_index so that large bubbles don't hide smaller
riti_summary <- riti_summary[order(riti_summary$ri_mean, decreasing = TRUE),]

#plot; note indexing sp for plot.sp
sp::plot(greatLakesPoly, asp = 1,

xlim = range(riti$mean_longitude),
ylim = range(riti$mean_latitude),
col = "white", bg = "grey80")

#make column for symbol color
riti_summary$color <- "red"
riti_summary$color[riti_summary$ri_mean == 0] <- "pink" #sites with no detects

points(mean_latitude ~ mean_longitude, data = riti_summary,
pch = 21, cex = 1 + 30*ri_mean, bg = color)

17

2.3.1.2 monthly intervals

18

2.4 Timedelta Method

The “Timedelta” method (method (calculation_method = "timedelta") calculates the time difference
between the first first_detection among all detection events and the last last_detection among all detection
events. The timedelta for each location is divided by the timedelta among all locations to determine the
residence index.

RI = ∆tk

∆T

RI = Residence Index
∆tk = Last detection time at the location - First detection time at the location
∆T = Last detection time at any location - First detection time at any location

ritd <- glatos::residence_index(det_events, locations = locs,
calculation_method = "timedelta")

#calculate mean and sd of RI among fish
ritd_summary <- ritd %>%

group_by(location, mean_latitude, mean_longitude) %>%
summarise(

ri_mean = mean(residency_index),
ri_sd = sd(residency_index))

`summarise()` has grouped output by 'location', 'mean_latitude'. You can override using the `.groups` argument.

#sort by decreasing residency_index so that large bubbles don't hide smaller
ritd_summary <- ritd_summary[order(ritd_summary$ri_mean, decreasing = TRUE),]

#plot; note indexing sp for plot.sp
sp::plot(greatLakesPoly, asp = 1,

xlim = range(ritd$mean_longitude),
ylim = range(ritd$mean_latitude),
col = "white", bg = "grey80")

#make column for symbol color
ritd_summary$color <- "red"
ritd_summary$color[ritd_summary$ri_mean == 0] <- "pink" #sites with no detects

points(mean_latitude ~ mean_longitude, data = ritd_summary,
pch = 21, cex = 1 + 30*ri_mean, bg = color)

19

The relatively large points in Saginaw Bay reflect that the total time spanned (not necessarily occupied or
detected) at those sites was proportionally larger than others. In other words, fish tended to revisit those
sites over long time periods. Keep in mind however, that this could be influenced by other variables, such
as the amount of time a fish was at large and alive.

20

2.5 Aggregate With Overlap Method

The “Aggregate With Overlap” method (calculation_method = "aggregate_with_overlap") takes the
length of time of each detection event and sums them together. The sum for each location is then divided
by the sum among all locations to determine the residence index.

An overlap is two or more detections events which occur together for any period of time at a single locaion. For
example, if the first detection event at a station spans from 2016-01-01 01:02:43 to 2016-01-01 01:10:12
and the second detection event at the same station spans from 2016-01-01 01:09:01 to 2016-01-01
01:12:43, then these are overlapping. Overlapping events at a given location will only exist in detection
event data if multiple animals are represented and therefore is only applicable when group_col = NULL.

RI = tk

T

RI = Residence Index
tk = Sum of length of time of each detection at the location
T = Sum of length of time of each detection among all locations

Note that we set group_col = NA for this method.

riawo <- glatos::residence_index(det_events, locations = locs,
calculation_method = "aggregate_with_overlap",
group_col = NA)

#calculate mean and sd of RI among fish
riawo_summary <- riawo %>%

group_by(location, mean_latitude, mean_longitude) %>%
summarise(

ri_mean = mean(residency_index),
ri_sd = sd(residency_index))

`summarise()` has grouped output by 'location', 'mean_latitude'. You can override using the `.groups` argument.

#sort by decreasing residency_index so that large bubbles don't hide smaller
riawo_summary <- riawo_summary[order(riawo_summary$ri_mean, decreasing = TRUE),]

#plot; note indexing sp for plot.sp
sp::plot(greatLakesPoly, asp = 1,

xlim = range(riawo$mean_longitude),
ylim = range(riawo$mean_latitude),
col = "white", bg = "grey80")

#make column for symbol color
riawo_summary$color <- "red"
riawo_summary$color[riawo_summary$ri_mean == 0] <- "pink" #sites with no detects

points(mean_latitude ~ mean_longitude, data = riawo_summary,
pch = 21, cex = 1 + 30*ri_mean, bg = color)

21

22

2.6 Aggregate No Overlap Method

The “Aggregate No Overlap” method (calculation_method = "aggregate_no_overlap") takes the length
of time of each detection event and sums them together. However, any overlap in time between one or more
detection events is excluded from the sum. For example, if the first detection event spans from 2016-01-01
01:02:43 to 2016-01-01 01:10:12 and the second detection event spans from 2016-01-01 01:09:01 to
2016-01-01 01:12:43, then the sum of those two events would be 10 minutes. A total is returned once all
events have been added without overlap. The sum for each station is then divided by the sum of the array
to determine the residence index.

Overlapping events at a given location will only exist in detection event data if multiple animals are repre-
sented and therefore is only applicable when group_col = NA.

RI = tk

T

RI = Residence Index
tk = Sum of length of time of each location, excluding any overlap
tk = Sum of length of time among all locations, excluding any overlap

Note that we set group_col = NA for this method.

riano <- glatos::residence_index(det_events, locations = locs,
calculation_method = "aggregate_with_overlap",
group_col = NA)

#calculate mean and sd of RI among fish
riano_summary <- riano %>%

group_by(location, mean_latitude, mean_longitude) %>%
summarise(

ri_mean = mean(residency_index),
ri_sd = sd(residency_index))

`summarise()` has grouped output by 'location', 'mean_latitude'. You can override using the `.groups` argument.

#sort by decreasing residency_index so that large bubbles don't hide smaller
riano_summary <- riano_summary[order(riano_summary$ri_mean, decreasing = TRUE),]

#plot; note indexing sp for plot.sp
sp::plot(greatLakesPoly, asp = 1,

xlim = range(riano$mean_longitude),
ylim = range(riano$mean_latitude),
col = "white", bg = "grey80")

#make column for symbol color
riano_summary$color <- "red"
riano_summary$color[riano_summary$ri_mean == 0] <- "pink" #sites with no detects

points(mean_latitude ~ mean_longitude, data = riano_summary,
pch = 21, cex = 1 + 30*ri_mean, bg = color)

23

In this particular data set, there are no overlapping detection events (among fish). Otherwise, these points
would appear smaller than the previous example.

24

	Introduction
	Function overview
	Calculation methods
	Defining locations
	Other grouping variables
	Accounting for groups in total time

	Examples
	Getting started
	Importing Libraries
	Importing and compressing data

	Kessel Method
	Optional location data
	Groupwise total time

	Time Interval Method
	Changing time interval size

	Timedelta Method
	Aggregate With Overlap Method
	Aggregate No Overlap Method

